Multiphase Transfer Pump (MPTP)

Compact Compression's Multiphase Transfer Pump (MPTP) is directly descended from the ground-breaking HCG Compressor, several of which have been employed in multiphase pumping service. Its principle of operation is very similar to the HCG Compressor with several key enhancements to product design and materials to increase performance, reliability and serviceability for multiphase pumping applications.

The MPTP is specifically designed for use at a satellite or header where production from multiple wells is collected. The resulting drop in line pressure allows the wells feeding into the MPTP to produce more.

The MPTP costs less than installing individual compressors on each well, has more throughput with less peak power demand and has a lower service cost than an HCG Compressor in multiphase service.

Separate pumps, compressors, separators, flares and process control systems at satellites can be eliminated with the MPTP. It can replace aging and maintenance intensive field infrastructure, reducing field OPEX. Lead times for new equipment, turnaround time for repairs and maintenance, capital costs and operating expenses are an order of magnitude less compared to typical twin-screw multiphase pumping systems.

Applications

- Multiphase fluid transfer
- Group emulsion header boosting
- Field production optimization

Standard Features

- Capable of liquid fractions 0 100%
- Liquid rates up to 2660 m³/d (16,730 bpd)
- Maximum △P up to 2415 kPa (350 psi)
- Handles wide range of API gravity & viscosity
- 100% turndown capability
- No minimum liquid volume required through pump
- Highly tolerant of entrained solids
- Extremely robust intake and discharge valve design
- Optimized power utilization
- Seals can be easily replaced on site
- No additional lifting equipment required for servicing
- Superior user interface web browser HMI

Benefits

- Decreases flowline pressure at wellhead
- Reduces head and power requirements for downhole pumps
- Eliminates the need for separate pumps and compressors at satellite facilities
- Eliminates flaring from separator vessels at satellites
- Low capital and operating cost
- Very quick turnaround for repair and maintenance

www.compactcompression.com

Performance Chart (Preliminary)

DISCHARGE PRESSURE (psig <u>kPag</u>)											
		100	150	200	250	300	350	400	450	500	
SUCTION (psig kPag)		700	1035	1380	1725	2070	2420	2760	3100	3450	
	10	133	123	93	70	53	48				
	70	3.8	3.5	2.6	2.0	1.5	1.4				
	20	1 9 8	187	144	112	86	81				
	140	5.6	5.3	4.1	3.2	2.4	2.3				
	30	265	254	227	179	144	113				
	210	7.5	7.2	6.4	5.1	4.1	3.2				
	40	331	322	290	230	183	145				
	280	9.4	9.1	8.2	6.5	5.2	4.1				
	50	397	389	357	279	233	178				
	345	11.2	11.0	10.1	7.9	6.6	5.1				
	75	563	554	536	420	332	263	247			
	520	15.9	15.7	15.1	11.9	9.4	7.5	7.0			
	100		720	711	643	510	411	334	312		
	700		20.3	20.1	18.2	14.4	11.6	9.4	8.8		
	150			1044	1034	931	732	595	486	450	
	1035			29.5	29.2	26.3	20.7	16.8	13.7	12.7	
	200				1367	1358	1204	952	777	637	
	1380				38.6	38.4	34.0	26.9	22.0	18.0	

Projected Performance based on 2500 ft, gas density .66, temp 68°F. Flow rates in **mscf/d** $e^{3}m^{3}/d$ Liquids volume reduces gas throughput proportionally as a percentage of swept volume

Hyd. Pump	Maximu	m Flow	Maximum ΔP			
Pressure Range	m3/d	bpd	psi	kPa		
Very High	1360	8,550	350	2413		
High	1750	11,010	270	1861		
Medium	2180	13,710	220	1517		
Low	2660	16,730	170	1172		